10,404 research outputs found

    Quantum anomalous vortex and Majorana zero mode in iron-based superconductor Fe(Te,Se)

    Full text link
    In topological insulators doped with magnetic ions, spin-orbit coupling and ferromagnetism give rise to the quantum anomalous Hall effect. Here we show that in s-wave superconductors with strong spin-orbit coupling, magnetic impurity ions can generate topological vortices in the absence of external magnetic fields. Such vortices, dubbed quantum anomalous vortices, support robust Majorana zero-energy modes when superconductivity is induced in the topological surface states. We demonstrate that the zero-energy bound states observed in Fe(Te,Se) superconductors are possible realizations of the Majorana zero modes in quantum anomalous vortices produced by the interstitial magnetic Fe. The quantum anomalous vortex matter not only advances fundamental understandings of topological defect excitations of Cooper pairing, but also provides new and advantageous platforms for manipulating Majorana zero modes in quantum computing.Comment: final version, 8 pages, 3 figures + supplemental materia

    The dependence of tidal stripping efficiency on the satellite and host galaxy morphology

    Full text link
    In this paper we study the tidal stripping process for satellite galaxies orbiting around a massive host galaxy, and focus on its dependence on the morphology of both satellite and host galaxy. For this purpose, we use three different morphologies for the satellites: pure disc, pure bulge and a mixture bulge+disc. Two morphologies are used for the host galaxies: bulge+disc and pure bulge. We find that while the spheroidal stellar component experiences a constant power-law like mass removal, the disc is exposed to an exponential mass loss when the tidal radius of the satellite is of the same order of the disc scale length. This dramatic mass loss is able to completely remove the stellar component on time scale of 100 Myears. As a consequence two satellites with the same stellar and dark matter masses, on the same orbit could either retain considerable fraction of their stellar mass after 10 Gyrs or being completely destroyed, depending on their initial stellar morphology. We find that there are two characteristic time scales describing the beginning and the end of the disc removal, whose values are related to the size of the disc. This result can be easily incorporated in semi-analytical models. We also find that the host morphology and the orbital parameters also have an effect on the determining the mass removal, but they are of secondary importance with respect to satellite morphology. We conclude that satellite morphology has a very strong effect on the efficiency of stellar stripping and should be taken into account in modeling galaxy formation and evolution.Comment: 11 pages, 9 figures; accepted for publication in MNRA

    Analytic smoothness effect of solutions for spatially homogeneous Landau equation

    Get PDF
    In this paper, we study the smoothness effect of Cauchy problem for the spatially homogeneous Landau equation in the hard potential case and the Maxwellian molecules case. We obtain the analytic smoothing effect for the solutions under rather weak assumptions on the initial datum.Comment: 16 page

    Synthesis and structures of O-anthrylmethyl-substituted hexahomotrioxacalix[3]arenes

    Get PDF
    O-Alkylation of 7,15,23-tri-tert-butyl-25,26,27-trihydroxy-2,3,10,11,18,19-hexahomo-3,11,19-trioxacalix[3]arene (1Hā‚ƒ) with 9-chloromethylanthracene 5 was carried out under different reaction conditions. Variation of the number of anthrylmethyl group introduced at the phenolic rim of hexahomotrioxacalix[3]arene 1Hā‚ƒ was achieved through selective O-alkylation using stoichiometric amounts of 9-chloromethylanthracene 5 in acetone to afford the mono-O-alkylated product 2Hā‚‚An, the di-O-alkylated product 3HAnā‚‚ and the tri-O-alkylated product partial-cone-4Anā‚ƒ, respectively. Interestingly, by using an acetone/benzene (1:1 v/v) mixed solvent system, the cone-4Anā‚ƒ was successfully synthesized. These results suggest that the solvent can also control the conformation of the O-alkylation products. The possible reaction routes of the cone-4Anā‚ƒ and partial-cone-4Anā‚ƒ are also discussed

    Analysis of controlled auto-ignition /HCCI combustion in a direct injection gasoline engine with single and split fuel injections

    Get PDF
    A multi-cycle three-dimensional CFD engine simulation programme has been developed and applied to analyze the Controlled autoignition (CAI) combustion, also known as homogeneous charge compression ignition (HCCI), in a direct injection gasoline engine. CAI operation was achieved through the negative valve overlap method by means of a set of low lift camshafts. In the first part of the paper, the effect of single injection timing on combustion phasing and underlying physical and chemical processes involved was examined through a series of analytical studies using the multi-cycle 3D engine simulation programme. The analyses showed that early injection into the trapped burned gases of a lean-burn mixture during the negative valve overlap period had a large effect on combustion phasing, due to localized heat release and the production of chemically reactive species. As the injection was retarded to the intake stroke, the charge cooling effect tended to slow down the autoignition process. However, further retard of fuel injection to the compression stroke caused the earlier start of main combustion as fuel stratification was produced in the cylinder. In order to optimize the engine performance and engine-out emissions, double injection was investigated by injecting part of the fuel first in the negative valve overlap period and the rest of fuel during the intake or compression strokes. By varying the fueling of each injection, the best engine performance was obtained with the 50/50 fuel injection split ratio, while the lowest total NOx and soot emissions were seen with the optimal split injection ratio of 10/90
    • ā€¦
    corecore